Modulator

Issue No. 17

Go to issue no.

Ion Channels in Cancer

Ion channels have long been known to be involved in the regulation of a variety of biological functions ranging from the control of cell excitability to the regulation of cell volume and proliferation. Because of the ubiquitous presence of ion channels in virtually all cells and their critical …

more

Large Conductance Ca2+-Dependent K+ (BKCa) Channels

Ca2+ dependent K+ (KCa) channels are divided according to biophysical properties and gene homology into two main groups. KCa were first divided according to their single channel conductance, which represents the speed by which the K+ passes via the open channel. The first group consists of …

more

The Ionotropic GABAA Receptor

GABA (g-aminobutiric acid) is the major inhibitory neurotransmitter in the brain. Its production, release, reuptake and metabolism occur in the nervous system.1 The GABA transmitter interacts with two major types of receptors: ionotropic GABAA (GABAAR) and the metabotropic GABAB receptors. The …

more

Role of Neurotrophins in Synapse Formation

The neurotrophins (“neuro” means nerve and “trophe” means nutrient)1 are a family of soluble, basic growth factors which regulate neuronal development, maintenance, survival and death in the central and peripheral nervous systems2. They include NGF, the first member of the family to be …

more

The Purinergic P2X Receptors

ATP has been identified as an excitatory neurotransmitter and neuromodulator during physiological processes. The released ATP activates a class of receptors named purinergic receptors: the metabotropic P2Y receptors and the ionotropic P2X receptors1,2. The P2X receptors belong to the ligand-gated …

more

T-type CaV Channels

Voltage-dependent Ca2+ (CaV) channels form an important route for Ca2+ entry into cells, upon deviations from the cell’s resting membrane potential. Functionally, CaV channels are divided into Low Voltage-Activated (LVA) and High Voltage-Activated (HVA) channels1. This functional division …

more

The Purinergic P2Y Receptors

P2 receptors mediate the actions of the extracellular nucleotides (ATP, ADP, UTP, UDP) and regulate several physiologic responses, among them, cardiac function, platelet aggregation, and SMC proliferation1. The metabotropic P2Y receptors belong to the G-protein-coupled receptor (GPCR) super …

more