Postsynaptic Marker Antibody Kit

A Screening Package of Postsynaptic Marker Antibodies Economically Priced
  • Lyophilized Powder
  • Antigen Incl.
Cat #: AK-236
Sizes: 32 Vials
Last update: 30/05/2019

Alomone Labs is pleased to offer the Postsynaptic Marker Antibody Kit (#AK-236). This Marker Kit includes antibodies targeting postsynaptic markers along with their respective control peptide antigen. An ideal tool for screening purposes.

For research purposes only, not for human use
Product Name Cat # Size
Anti-ADAM22 (extracellular) Antibody
ANR-120 1 x 50 µl
Anti-DLGAP1/GKAP Antibody
APZ-041 1 x 50 µl
Anti-EphA1 (extracellular) Antibody
AER-011 1 x 50 µl
Anti-EphB1 (extracellular) Antibody
AER-021 1 x 50 µl
Anti-GRIP1 Antibody
APZ-015 1 x 50 µl
Anti-Homer2 Antibody
APZ-027 1 x 50 µl
Anti-LRRTM1 (extracellular) Antibody
ANR-141 1 x 50 µl
Anti-Neuroligin 1 (extracellular) Antibody
ANR-035 1 x 50 µl
Anti-Neuroligin 2 (extracellular) Antibody
ANR-036 1 x 50 µl
Anti-Neuroligin 3 (extracellular) Antibody
ANR-037 1 x 50 µl
Anti-PSD-93 Antibody
APZ-002 1 x 50 µl
Anti-PSD-95 Antibody
APZ-009 1 x 50 µl
Anti-SAP-97/DLG1 Antibody
APZ-010 1 x 50 µl
Anti-SAP102 Antibody
APZ-003 1 x 50 µl
Anti-Shank1 Antibody
APZ-011 1 x 50 µl
Anti-Shank3 Antibody
APZ-013 1 x 50 µl
Scientific Background
    • The synapse is the junction at which neuronal communication is taking place; the information signal flows from the presynaptic neuron – or the transmitter – via its axon's end, to the postsynaptic cell – or the receiver – usually a neuron's dendrite but can also be the beginning of an adjacent neuron's axon, or any other excitable cell, such as a muscle cell.

      At the synapse, communicating cells do not contact each other directly, but rather through the synaptic cleft. There, the presynaptic cell releases by exocytosis vesicles containing neurotransmitters and neuroactive peptides that bind to receptors at the membrane of the postsynaptic cell; this results in inhibition or excitation the target cell or an endocrinal signaling through the blood stream. Synaptic transmission is mostly chemical, but can also be entirely electrical1-3.

      Both the presynaptic membrane, where exocytosis takes place, and the synaptic vesicle membrane harbor a cluster of fusion proteins known as soluble N-ethylmaleimide–sensitive factor attachment receptors (SNAREs). The synaptic vesicle is released from the presynaptic cell when synaptobrevin, a type of SNARE that is expressed on the vesicle's membrane, binds syntaxin, SNAP-25 and Munc18 on the presynaptic membrane, thereby forming a tight connection which destabilizes the phospholipid arrangement of the membranes of both the vesicle and the cell. At the same time, influx of Ca2+ sensitizes the synaptic vesicle proteins known as synaptotagmins, and facilitates vesicle-membrane fusion. These processes culminate in the formation of a pore through which the content of the vesicle is spilled. Then, the SNARE complex dismounts and the vesicle is withdrawn backwards by endocytosis, to be recycled for additional rounds4,5.

Related Products