
TTA-P2 and TTA-A2: Specific and Potent Ca_v3 Channel Blockers

Melanie R. Grably, Ph.D.

Genes encoding T-type Ca_v channels yield three pore-forming subunits: Ca_v3.1, Ca_v3.2 and Ca_v3.3 which give rise to currents that are pharmacologically and electrophysiologically different from the high voltage Ca_v1 and Ca_v2 channel currents. Due to their important physiological roles, and to the increasing number of channelopathies associated with T-type channels, the need of specific and potent pharmacology is rising. In this piece, we highlight the use of TTA-A2 and TTA-P2, two specific and potent T-type channel blockers exclusively available at Alomone Labs.

Right: TTA-A2 is a selective and potent T-type Ca_v channel blocker.

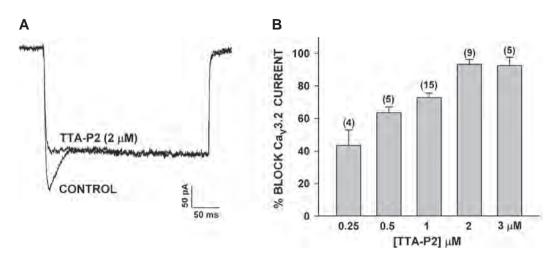
Introduction

T-type Ca_v channels regulate neuronal excitability, hormone secretion, and neurotransmitter release. They also play important roles in the circadian cycle, cardiovascular and rennin-angiotensin systems.

Knockout of Ca_v3.1, Ca_v3.2 or Ca_v3.3 channels in mice yields viable phenotypes, albeit each with various problems. Channelopathies associated with T-type channels include autism, epilepsy, hypertension, hyperaldosteronism, chronic pain, and neuropathic pain. Due to their important physiological roles, and to the increasing number of channelopathies associated with the channels, the need of specific and potent pharmacology is rising⁹.

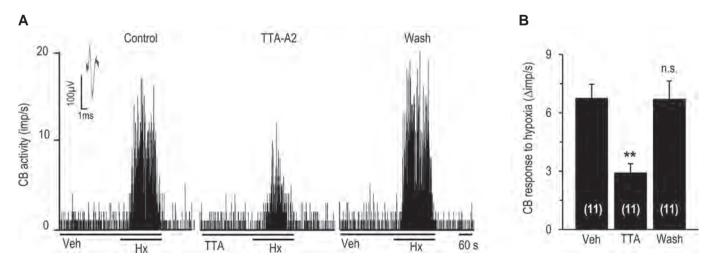
TTA-P2

TTA-P2, a derivative of 4-aminomethyl-4-fluoropiperidine, was first discovered to potently and reversibly block T-type currents from rat acutely dissociated DRGs, with an IC_{so} of 100 nM and stabilize T-type channels in their inactivated states. L-type Ca_v channels and Na_v channels are 100-1000 fold less sensitive to the compound's blocking actions¹.


TTA-P2 (#T-155) was used to gain more insight on the specific role and identity of Ca_v channels expressed in adrenal fasciculate cells. Indeed, TTA-P2 inhibited $Ca_v3.2$ currents expressed in the cells (Figure 1) and

inhibited adrenocorticotropic hormone (ACTH) and Angiotensin II-stimulated cortisol secretion². Under hypoxia, catecholamine secretion by the adrenal gland increases in a BDNF/TrkB-dependent manner. TrkB receptor is highly expressed in the medulla as shown in immunohistochemical staining using Alomone Labs **Anti-TrkB (extracellular) Antibody** (#ANT-019), and its expression increased under hypoxic conditions. In addition to catecholamine secretion, activation of TrkB also lead to an increase in [Ca²⁺], caused by T-type Ca_v currents which was inhibited by the application of TTA-P2, thus showing a linkage between BDNF/TrkB signaling and T-type currents⁷.

The transmission of pain begins at the spinal dorsal horn which then transmits the information onward. Rebound depolarization following hyperpolarization in dorsal horn neurons is an important feature in those cells and was characterized in part by the use of TTA-P2. Data show that rebound depolarization and firing by T-type Ca_v channels and their currents are important for integrating somatosensory information in the spinal cord⁶.


The thalamus plays an important role in integrating inputs from the cortex. Once the thalamus receives these inputs, it sends them back to the cortex creating a cortico-thalamo-cortical loop. These synapses and their contribution to higher brain functions were studied. Barrel cortex layer 5B neurons and those of the posteriomedial nucleus (POm) were used to study the thalamo-cortical synapse formation. Using conditional knockout of GluA4, shRNA targeting Ca_y3.1 channel and the T-type specific blocker TTA-P2, data show that GluA4 and Ca_y3.1 control important aspects of the synaptic transmission at L5-POm synapse⁸.

A. Bovine adrenal zona fasciculate (AZF) whole cell recordings. Ca^{2+} currents were recorded in 10 mM Ba^{2+} in response to voltage steps to -5 mV, applied from a holding potential of -80 mV, before and after superfusion of the cell with 2 μ M **TTA-P2** (#T-155). B. Concentration-dependent inhibition of $Ca_y3.2$ currents by TTA-P2. Values are means \pm SE for number of determinations shown in parentheses. Adapted from reference 2 with permission of the American Physiological Society.

Figure 2. T-Type Ca, Channel Response to Hypoxia Is Inhibited by TTA-A2

A. Representative example of sensory nerve response (impulses (imp)/s) to hypoxia in the presence of vehicle or 25 μ M **TTA-A2** (#T-140), and 5 min after washout. B. Effect of TTA-A2 on sensory nerve response to hypoxia.

Adapted from reference 5 with permission of the American Physiological Society.

TTA-A2

TTA-A2 was discovered in an effort to identify T-type specific and potent blockers. The compound was characterized on transfected HEK 293 cells and on native T-type currents. Data show that TTA-A2 has an IC_{50} value of 100 nM, and like TTA-P2, it binds preferentially to Ca_v3 channels in their inactive state. TTA-A2 is 300-fold selective for Ca_v3 channels. *in vivo*, TTA-A2 administration suppresses active wake and promotes slow-wave sleep in wild-type but not in mice lacking $Ca_v3.1$ and $Ca_v3.2^4$.

Oxygen levels in the blood are detected by carotid bodies. Voltage-gated Ca²⁺ channels play an important role in detecting O₂ levels. Ca_y3.2 channel is the major T-type Ca_y channel expressed in glomus cells, the cells important for sensing O₂. Indeed, RT-PCR and immunohistochemistry using **Anti-Ca_y3.2** (CACNA1H) Antibody (#ACC-025) shows that Ca_y3.2 is highly expressed in the rat carotid body. Western blot analysis of rat DRG lysates using the same antibody shows that the Ca²⁺ channel is also expressed in DRGs. Importantly, use of the control peptide antigen completely obliterated the signal obtained with the antibody. In addition, Ca_y3.2 was found to be involved in mediating the carotid body's response to hypoxia, an effect inhibited by the application of **TTA-A2** (#T-140) (Figure 2)⁵.

The contribution of T-type channels in myogenic reactivity of retinal arterial vessels was studied in arterioles of the rat retinal microcirculation. Immunohistochemical staining of rat retinal arterioles using **Anti-CACNA1G (Ca_v3.1) Antibody** (#ACC-021) and Anti-Ca_v3.2 (CACNA1H) Antibody showed that while Ca_v3.2 was not detected, strong Ca_v3.1 staining was observed on the plasma membrane of retinal arteriole smooth muscle cells. Ca_v3.2 was detected on glial cell end-feet surrounding the vessels. Application of TTA-A2 or **ML 218** (#M-165) dilated isolated, myogenically active retinal arterioles, demonstrating that Ca_v3.1 channels are functionally expressed on arteriole smooth muscle cells or retinal arterioles and play an important role in myogenic signaling³.

References

14

1. Choe, W. et al. (2011) Mol. Pharmacol. 80, 900.

- 2. Enyeart, J.J. and Enyeart, J.A. (2015) Am. J. Physiol. 308, C899.
- 3. Fernandez, J.A. et al. (2015) Invest. Ophtalmol. Vis. Sci. 56, 5125.
- 4. Kraus, R.L. et al. (2010) J. Pharmacol. Exp. Ther. 335, 409.
- 5. Makarenko, V.V. et al. (2015) Am. J. Physiol. 308, C146.
- 6. Rivera-Arconada, I. and Lopez-Garcia, J.A. (2015) Pflugers Arch. 467, 1985.
- 7. Scott, A.L. et al. (2015) J. Physiol. 593, 3281.
- 8. Seol, M. and Kuner, T. (2015) Eur. J. Neurosci. 42, 3033.
- 9. Zamponi, G.W. et al. (2015) Pharmacol. Rev. 67, 821.

Related Products

ACC-021
ACC-021-AR
ACC-025
ACC-009

T-Type Ca_v Channel Blockers

· // · ···/	
Amlodipine	A-110
Amlodipine besylate	A-120
Benidipine hydrochloride	
Flunarizine dihydrochloride	F-110
GTx1-15	
L-Ascorbic acid	
Mibefradil dihydrochloride hydrate	M-150
ML 218	M-165
ML 218 hydrochloride	
Nicardipine HCl	N-125
NNC 55-0396 dihydrochloride	N-205
NNC 55-0396 dihydrochloride hydrate	N-206
Penfluridol	P-135
ProTx-I	
ProTx-II	STP-100
Roscovitine	R-300
SKF 96365 hydrochloride	S-175
TTA-A2	T-140
TTA-P2	T-155
TTA-P2 (S-enantiomer)	T-210

TrkB Antibody

Anti-TrkB (extracellular) Antibody

Explorer Kits	
Cardiac Ca _v Channel Antibody Explorer Kit	AK-310
Cardiac Channel Blocker Explorer Kit	EK-345
Ca _v Channel Antibodies for Pain Research Explorer Kit	AK-360
Classical Ion Channel Blockers for Pain Research Explorer Kit	EK-355
Non-L-Type Ca _v Channel Antibody Explorer Kit	AK-216
T-Type Ca _v Channel Blocker Explorer Kit	EK-111

ANT-019

Research Packs

T-Type Ca, Channel Basic Research Pack	ESB-101
T-Type Ca _v Channel Premium Research Pack	ESP-101
T-Type Ca _v Channel Deluxe Research Pack	ESD-101

Ca_v3 Channel product listing

Did You Know?

Our unique free sample program enables you to try novel products.