Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody

Small conductance calcium-activated potassium channel protein 3, SKCa3
    Cat #: APC-025
  • Lyophilized Powder
  • Antigen Incl.
  • Shipped at Room Temp.
  • Type: Polyclonal
    Source: Rabbit
    Reactivity: h, m, r
    Immunogen
    Peptide DTSGHFHDSGVGDLDEDPKC, corresponding to amino acid residues 2-21 of human KCNN3 (Accession Q9UGI6). Intracellular, N-terminus.
    Accession (Uniprot) Number Q9UGI6
    Gene ID 3782
    Peptide confirmation Confirmed by amino acid analysis and mass spectrometry.
    Homology Rat, mouse, pig - identical.
    Purity Affinity purified on immobilized antigen.
    Formulation Lyophilized powder. Reconstituted antibody contains phosphate buffered saline (PBS), pH 7.4, 1% BSA, 0.05% NaN3.
    Storage before reconstitution The antibody ships as a lyophilized powder at room temperature. Upon arrival, it should be stored at -20°C.
    Reconstitution 25 µl, 50 μl or 0.2 ml double distilled water (DDW), depending on the sample size.
    Antibody concentration after reconstitution 0.6 mg/ml.
    Storage after reconstitution The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods, small aliquots should be stored at -20°C. Avoid multiple freezing and thawing. Centrifuge all antibody preparations before use (10000 x g 5 min).
    Control antigen storage before reconstitution Lyophilized powder can be stored intact at room temperature for 2 weeks. For longer periods, it should be stored at -20°C.
    Control antigen reconstitution 100 µl double distilled water (DDW).
    Control antigen storage after reconstitution -20°C.
    Preadsorption Control 1 μg peptide per 1 μg antibody.
    Standard quality control of each lot Western blot analysis.
    Applications: ic, ih, wb
    May also work in: ifc, ip
    Western blot
    Western blot analysis of rat brain membranes:
    1. Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody (#APC-025), (1:200).
    2. Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody, preincubated with the control peptide antigen.
    Mouse and human uterine tissue (1:100) (Pierce, S.L. and England, S.K. (2010) Am. J. Physiol. 299, E640.).
    Immunohistochemistry
    Expression of KCa2.3 (SK3) in mouse dopaminergic neurons
    Immunohistochemical staining of mouse dopaminergic neurons using Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody (#APC-025). A. KCa2.3 is detected in substantia nigra pars compacta. B. Tyrosine hydroxylase staining shows dopaminergic neurons. Triangles point at cells with co-localization.
    Immunocytochemistry
    CHO-K1 cells expressing human SK3 (1:1000) (Terstappen, G.C. et al. (2001) Neuropharmacology 40, 772.).
    References
    1. Kohler, M. et al. (1996) Science 273, 1709.
    2. Xia, X.M. et al. (1998) Nature 395, 503.
    3. Stocker, M. (2004) Nat. Rev. Neurosci. 5, 758.
    Scientific background

    KCNN3 (KCa2.3, SK3) is a member of the Ca2+-activated K+ channel family with small conductance that includes KCNN1 (KCa2.1, SK1) and KCNN2 (KCa2.2, SK2). The channel is voltage insensitive and is activated by intracellular Ca2+ in the submicromolar range. It has, though, a similar topology to that of voltage-dependent K+ channels (KV channels), that is six transmembrane domains and intracellular N- and C-termini. The functional channel of all the KCa2 family members is a multimeric protein composed of four pore-forming subunits.

    KCa2 channels are extremely sensitive to the levels of intracellular Ca2+ and concentrations as low as 300-700 nM can open the channels very rapidly (5-15 ms). Hence, the KCa2 channels are highly sensitive and fast Ca2+ sensors resembling other known Ca2+-binding proteins. This type of Ca2+-dependent activation is achieved by the constitutive binding of the KCa2 channels to calmodulin, a highly expressed Ca2+-binding protein via a calmodulin-binding domain situated at the cytoplasmic C-terminus.

    Pharmacologically, the KCa2 channels are the only known targets of the bee venom toxin Apamin, with KCNN1 being the least sensitive, KCNN2 the most sensitive and KCNN3 showing intermediate sensitivity.

    KCNN3 is predominantly expressed in the nervous system although expression in endothelial cells, heart and liver have been described.

    KCNN3 is known to be involved in the regulation of neuronal excitability. They do so mainly via a phenomenon known as after hyperpolarization in which KCa2 channels open in response to increased intracellular Ca2+ concentrations that result from the entry of extracellular Ca2+ through voltage-dependent Ca2+ channels during action potentials. In this way, KCa2 channels effectively form a Ca2+-mediated feedback loop.

    KCNN3 is involved in the control of firing rate and subsequent dopamine secretion from midbrain dopaminergic neurons. Since malfunction of these neurons is involved in several pathological disorders such as Parkinson’s disease and Schizophrenia, modulators of the KCNN3 channels have been proposed to be of therapeutic value in these diseases.

    Application key:

    CBE- Cell-based ELISA, FC- Flow cytometry, ICC- Immunocytochemistry, IE- Indirect ELISA, IFC- Indirect flow cytometry, IHC- Immunohistochemistry, IP- Immunoprecipitation, LCI- Live cell imaging, N- Neutralization, WB- Western blot

    Species reactivity key:

    H- Human, M- Mouse, R- Rat
    Image & Title:

    Anti-KCNN3 (KCa2.3, SK3) (N-term) AntibodyExpression of KCa2.3 (SK3) in mouse VNO neuronsImmunohistochemical staining of in VNO sections from Sk3T/T mice (conditional SK3 knockout mouse strain) fed with (right panel) or without (left panel) DOX diet using Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody (#APC-025).Adapted from Kim, S. et al. (2012) Nat. Neurosci. 15, 1236. with permission of Nature America.

    Last update: 09/12/2018

    Anti-KCNN3 (KCa2.3, SK3) (N-term) Antibody (#APC-025) is a highly specific antibody directed against an intracellular epitope at the N-terminus of the human KCNN3 channel. The antibody can be used in western blot, immunocytochemistry, and immunohistochemistry applications. It has been designed to recognize KCNN3 from human, rat, and mouse samples.

    For research purposes only, not for human use
    Citations
    KO validation citations
    1. Immunohistochemical staining of mouse mesenteric artery sections. Also tested in SK3-/- mice.
      Yap, F.C. et al. (2016) Am. J. Physiol. 310, H1151.
    2. Immunohistochemical staining of mouse VNO neurons. Also tested in conditional KO mice.
      Kim, S. et al. (2012) Nat. Neurosci. 15, 1236.
    Western blot citations
    1. Mouse CCDcl1 cell lysate (1:1000).
      Li, Y. et al. (2016) PLoS ONE 11, e0155006.
    2. Mouse mesenteric arteries lysate.
      Yap, F.C. et al. (2016) Am. J. Physiol. 310, H1151.
    3. Rat brain lysate (1:500).
      Larson, R.A. et al. (2015) Am. J. Physiol. 308, H1547.
    4. Mouse kidney lysate (1:00).
      Berrout, J. et al. (2014) PLoS ONE 9, e95149.
    5. Human iPS cells (1:500).
      Linta, L. et al. (2013) Ann. Anat. 195, 303.
    6. Mouse and human uterine tissue (1:100).
      Pierce, S.L. and England, S.K. (2010) Am. J. Physiol. 299, E640.
    7. Rat mesenteric arteries.
      Hilgers, R.H. et al. (2010) J. Pharmacol. Exp. Ther. 333, 210.
    Immunoprecipitation citations
    1. Rat cortical collecting duct cells.
      Pizzoni, A. et al. (2018) J. Cell Biochem. 119, 4120.
    Immunohistochemistry citations
    1. Mouse mesenteric artery sections. Also tested in SK3-/- mice.
      Yap, F.C. et al. (2016) Am. J. Physiol. 310, H1151.
    2. Mouse kidney sections (1:100).
      Berrout, J. et al. (2014) PLoS ONE 9, e95149.
    3. Rat trigeminal ganglion (1:100).
      Donegan, M. et al. (2013) Glia 61, 2000.
    4. Mouse VNO neurons. Also tested in conditional KO mice.
      Kim, S. et al. (2012) Nat. Neurosci. 15, 1236.
    5. Rat mesenteric artery paraffin-embedded sections.
      Hilgers, R.H. et al. (2010) J. Pharmacol. Exp. Ther. 333, 210.
    Immunocytochemistry citations
    1. Human iPS cells (1:100).
      Linta, L. et al. (2013) Ann. Anat. 195, 303.
    2. CHO-K1 cells expressing human SK3 (1:1000).
      Terstappen, G.C. et al. (2001) Neuropharmacology 40, 772.
    More product citations
    1. Gui, L. et al. (2013) Am. J. Physiol. 304, H118.
    2. Bagher, P. et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109, 18174.
    3. Sorensen, C.M. et al. (2011) Pflugers Arch. 462, 655.
    4. Wang, W. et al. (2011) Neuropharmacology 60, 901.
    5. Hopf, F.W. et al. (2010) Neuron 65, 682.
    6. Feng, J. et al. (2008) Circulation 118, S46.
    7. Pierce, S.L. et al (2008) Biol. Reprod. 78, 1058.
    8. Absi, M. et al. (2007) Br. J. Pharmacol. 151, 332.
    9. Brown, A. et al. (2007) Am. J. Physiol. 292, C832.
    10. Liebau, S. et al. (2007) J. Neurochem. 101, 1338.
    11. McNeish, A.J. et al. (2006) Stroke 37, 1277.
    12. Moriguchi, S. et al. (2006) Proc. Natl. Acad. Sci. 103, 10811.
    13. Sandow, S.L. et al. (2006) J. Anat209, 689.
    14. Yamazaki, D. et al. (2006) J. Biol. Chem. 281, 38430.
    15. Weston, A.H. et al. (2005) Circ. Res. 97, 391.
    16. Bond, C.T. et al. (2004) J. Neurosci. 24, 5301.
    17. Kolski Andreaco, A. et al. (2004) J. Biol. Chem. 279, 6893.
    18. Tamarina, N.A. et al. (2003) Diabetes 52, 2000.
    19. Taylor, M.S. et al. (2003) Circ. Res. 93, 124.
    20. Vanderwinden, J.M. et al (2002) Cell Tissue Res. 310, 349.
    21. Barfod, E.T. et al. (2001) Am. J. Physiol. 280, C836.
    22. Khanna, R. et al. (2001) Am. J. Physiol. 280, C796.
    23. Tacconi, S. et al. (2001) Neuroscience 102, 209.
    Related Products