Free shipping starts now, no minimum, no coupons required!

Recombinant human BDNF protein

Brain-Derived Neurotrophic Factor
Human Brain-Derived Neurotrophic Factor, Recombinant, E. coli
Cat #: B-250
Alternative Name Brain-Derived Neurotrophic Factor
Lyophilized Powder yes
  • Bioassay Tested
  • Sterile & Endotoxin Free yes
    Origin Recombinant, E. coli
    MW: 27 kDa.
    Endotoxin Level <0.1 EU per 1 µg of the protein by the LAL method.
    Purity: >98% (HPLC)
    Form Lyophilized from a 0.2 µm filtered solution.
    Effective concentration ED50 = 220 pM.
    Sequence HSDPARRGELSVCDSISEWVTAADKKTAVDMSGGTVTVLEKVPVSKGQLKQYFYETKCNPMGYTKEGCRGIDKRHWNSQCRTTQSYVRALTMDSKKRIGWRFIRIDTSCVCTLTIKRGR.
    Structure
    Activity BDNF is a neurotrophic factor and binds p75NTR as well as TrkB receptors1,2. BDNF supports the survival of many cell types3-8.
    References-Activity
    1. Tolkovsky, A. (1997) Trends Neurosci20, 1.
    2. Jing, S. et al. (1992) Neuron 9, 1067.
    3. Acheson, A. et al. (1995) Nature 374, 450.
    4. Morse, J.K. et al. (1993) J. Neurosci13, 4146.
    5. Hyman, C. et al. (1991) Nature 350, 230.
    6. Friedman, B. et al. (1995) J. Neurosci15, 1044.
    7. Meyer, M. et al. (1992) J. Cell Biol119, 45.
    8. Koliatsos, V.E. et al. (1993) Neuron 10, 359.
    Shipping and storage Shipped at room temperature. Product as supplied can be stored intact at room temperature for several weeks. For longer periods, it should be stored at -20°C.
    Solubility Sterile water at a concentration of at least 1 µg/0.1 ml. BSA (0.1 mg/ml) should be added for more diluted solutions. Centrifuge all product preparations before use (10000 x g 5 min). Repeated freezing/thawing might result in loss of activity.
    Storage of solutions Up to one week at 4°C or four-six weeks at -70°C.
    Our bioassay
    • Alomone Labs BDNF induces ERK1/2 MAPK phosphorylation of the neurotrophin receptor tyrosine kinase B (TrkB) transfected HEK-293 cells.
      Alomone Labs BDNF induces ERK1/2 MAPK phosphorylation of the neurotrophin receptor tyrosine kinase B (TrkB) transfected HEK-293 cells.
      Transfected cells were serum depleted for 2 h 3 days post-transfection and then challenged with 20 ng/ml Recombinant human BDNF protein (#B-250) for 10 min. The cell proteins were resolved by SDS-PAGE and detected with anti-TrkB and anti-phospho-ERK1/2.
    References - Scientific background
    1. Robinson, R.C. et al. (1995) Biochemistry 34, 4139.
    2. Ibanez, C.F. (1998) Trends Neurosci. 21, 438.
    3. Wetmore, C. et al. (1990) Exp. Neurol. 109, 141.
    4. Thoenen, H. et al. (1991) Ann. N. Y. Acad. Sci. 640, 86.
    5. Tolkovsky, A. (1997) Trends Neurosci. 20, 1.
    6. Jing, S. et al. (1992) Neuron 9, 1067.
    7. Acheson, A. et al. (1995) Nature 374, 450.
    8. Morse, J.K. et al. (1993) J. Neurosci. 13, 4146.
    9. Hyman, C. et al. (1991) Nature 350, 230.
    10. Friedman, B. et al. (1995) J. Neurosci. 15, 1044.
    11. Meyer, M. et al. (1992) J. Cell Biol. 119, 45.
    12. Koliatsos, V.E. et al. (1993) Neuron 10, 359.
    13. Rodriguez-Tebar, A. et al. (1992) EMBO J. 11, 917.
    14. Chun, H.S. et al. (2000) Neuroreport 11, 511.
    Scientific background

    Brain-derived neurotrophic factor (BDNF) is a member of the NGF family of neurotrophic growth factors, and shares high sequence homology with NGF, NT-3 and NT-4/5.1,2 BDNF is found in neurons of the central nervous system. It is expressed predominantly in hippocampus, cortex, and amygdaloid complex.3

    The synthesis of BDNF is subject to regulation by neuronal activity and specific transmitter systems.4

    BDNF binds to p75NTR, the neurotrophin receptor, and may initiate programmed cell death by acting through this receptor.5 Signal transduction is activated by the dimerization and autophosphorylation of the TrkB receptor.6

    BDNF supports the survival of primary sensory neurons,7 retinal ganglion cells, basal forebrain cholinergic neurons,8 and mesencephalic dopaminergic neurons in vitro.9 BDNF prevents death of cultured rat spinal motor neurons,10 and rescues substantial numbers of motor neurons after lesioning of the neonatal sciatic or facial nerve.11 Expression is switched on in Schwann cells following peripheral nerve lesion.11 BDNF also inhibits the normal cell death of embryonic chick motor neurons.12

    BDNF acts in concert with other factors and neurotrophins. The biological activities of BDNF and NT-3 (neurotrophin-3) are additive, and BDNF also interacts with LIF.13

    The effects of BDNF on motor neurons raise the possibility that it may be useful in treating patients with motor neuropathies and Amyotrophic Lateral Sclerosis (ALS).14

    Net Peptide Content: 100%
    Last update: 16/08/2020

    Recombinant human BDNF protein (#B-250) is a highly pure, recombinant, and biologically active protein.

    For research purposes only, not for human use

    Applications

    Specifications

    Scientific Background

    Citations

    Citations
    Product citations
    1. Hurtado, E. et al. (2017) Front. Mol. Neurosci. 10, 147.
    2. Katche, C. and Medina, J.H. (2017) Cereb. Cortex 27, 1060.
    3. Myrum, C. et al. (2017) Front. Cell. Neurosci. 11, 294.
    4. Cordon-Barris, L. et al. (2016) Mol. Cell. Biol. 36, 2967.
    5. de la Cruz-Morcillo, M.A. et al. (2016) Oncotarget 7, 34480.
    6. Forster, J.I. et al. (2016) J. Biomol. Screen. 21, 496.
    7. Gaub, P. et al. (2016) PLoS ONE 11, e0150601.
    8. Luo, C. et al. (2016) Sci. Rep. 6, 27171.
    9. Slomnicki, L.P. et al. (2016) J. Biol. Chem. 291, 5721.
    10. Yan, L. et al. (2016) Sci. Rep. 6, 30014.
    11. Yan, Y. et al. (2016) Neuropharmacology 107, 227.
    12. Fulgenzi, G. et al. (2015) J. Cell Biol. 210, 1003.
    13. Genheden, M. et al. (2015) J. Neurosci. 35, 972.
    14. Hane, M. et al. (2015) Glycobiology 25, 1112.
    15. Jablonski, A.M. et al. (2015) J. Neurosci. 35, 14286.
    16. Nosheny, R.L. et al. (2015) Neurobiol. Dis. 77, 173.
    17. Zahavi, E.E. et al. (2015) J. Cell Sci. 128, 1241.
    18. Zeinieh, M. et al. (2015) J. Cell Sci. 128, 447.
    19. Zhai, J. et al. (2015) J. Neurosci. 35, 9088.
    20. Vega-Melendez, G.S. et al. (2014) J. Neurosci. Res. 92, 13.
    21. Collo, G. et al. (2013) Mol. Pharmacol. 83, 1176.
    22. Finsterwald, C. et al. (2013) PLoS ONE 8, e54545.
    23. Kelly, C.E. et al. (2013) PLoS ONE 11, e1001538.
    24. Lalchandani, R.R. et al. (2013) J. Neurosci. 33, 14075.
    25. Ovejero-Benito, M.C. and Frade, J.M. (2013) PLoS ONE 5, e64890.
    26. Zurashvili, Tet al. (2013) Mol. Cell Biol. 33, 1027.
    27. Wright, M.A. and Ribera, A.B. (2010) J. Neurosci. 30, 14513.
    28. Gomez-Palacio-Schjetnan A. and Escobar M.L. (2008) NeurosciLett. 445, 62.
    Shipping and Ordering information