Free shipping starts now, no minimum, no coupons required!

Tetrodotoxin citrate

TTX
A Classic Blocker of a Subset of NaV Channels
Cat #: T-550
Alternative Name TTX
Lyophilized Powder yes
  • Bioassay Tested
  • Origin Tetraodon pardalis (puffer fish).
    Source Natural
    MW: 319.27
    Purity: >99% (HPLC)
    Form Lyophilized in citrate buffer, may appear as powder or crystalline form.
    Effective concentration 100 nM - 1 μM.
    Structure
    Chemical name Octahydro-12-(hydroxymethyl)-2-imino-5,9:7,10a-dimethan o-10aH-[1,3]dioxocino[6,5-d]pyrimidine-4,7,10,11,12-pentol.
    Molecular formula C11H17N3O8.
    CAS No.: 18660-81-6.
    Activity Tetrodotoxin is a potent and selective blocker of a subclass of NaV channels1, and is often used to define subclasses of NaV channels2.
    References-Activity
    1. Narahashi, T. et al. (1964) J. Gen. Physiol. 47, 965.
    2. Hille, B. (2001) Ion Channels in Excitable Membranes (Third Edition) Chapter 3.
    Shipping and storage Shipped at room temperature. Product as supplied can be stored intact at room temperature for several weeks. For longer periods, it should be stored at 4°C.
    Solubility TTX citrate is freely soluble in water to over 10 mM. The reconstituted product contains citrate buffer.
    To reconstitute 1 mg lyophilized product to 10 mM stock solution – add 313 µl ddH2O to the vial and tap gently until fully dissolved. To reconstitute 50 µg lyophilized product to 1 mM stock solution – add 157 µl ddH2O to the vial and tap gently until fully dissolved.
    Centrifuge all product vials before handling and reconstitution (10000 x g 5 min).
    Storage of solutions Up to one week at 4°C or six months at -20°C.
    Our bioassay
    • Alomone Labs Tetrodotoxin citrate inhibits native NaV currents in ND7-23 cells.
      Alomone Labs Tetrodotoxin citrate inhibits native NaV currents in ND7-23 cells.
      Top: Time course of native inward current amplitude elicited from a holding potential of -100 mV by a 40 ms test pulse to -10 mV delivered every 15 sec. Application of 60 nM Tetrodotoxin citrate (#T-550) is marked in cyan blue. Bottom: Superimposed current traces before (blue) and during (cyan) bath perfusion of 60 nM TTX.
    References - Scientific background
    1. Narahashi, T. et al. (1964) J. Gen. Physiol47, 965.
    2. Hille, B. (2001) In: Ion Channels in Excitable Membranes (third edition) chapter 3.
    Scientific background Tetrodotoxin (TTX) is an established potent and selective blocker of some NaV channels.1 Moreover, TTX sensitivity is used to define subclasses of NaV channels.2 It is widely used both to probe NaV activity and to reduce or block excitability in neurophysiological preparations.
    Target Various NaV channels
    Last update: 16/08/2020

    Tetrodotoxin citrate (#T-550) is a highly pure, natural, and biologically active compound.

    For research purposes only, not for human use

    Applications

    Specifications

    Scientific Background

    Citations

    Citations
    Electrophysiology
    1. Mouse brain slices.
      Maciag, F. et al. (2019) Biochim. Biophys. Acta Mol. Cell Res. 1866, 1137.
    Product citations
    1. Accardi, M.V. et al. (2015) J. Neurosci. 35, 96776.
    2. Baquero, A.F. et al. (2015) J. Neurosci. 35, 8558.
    3. Borgquist, A. et al. (2015) Am. J. Physiol. Endocrinol. Metab. 308, E482.
    4. Borgquist, A. et al. (2015) J. Neurophysiol. 113, 904.
    5. Chand, A.N. et al. (2015) J. Neurosci. 35, 1573.
    6. Chen, Z. et al. (2015) J. Neurosci. 35, 2083.
    7. Costa, M. et al. (2015) Neurogastroenterol. Motil. 27, 1466.
    8. Jackson, J.G. and Robinson, M.B. (2015) J. Neurosci. 35, 15199.
    9. Lee, J.Y. et al. (2015) Am. J. Physiol. Gastrointest. Liver. Physiol. 308, G625.
    10. Martin-Eauclaire, M.F. et al. (2015) J. Gen. Physiol. 145, 155.
    11. Moore-Dotson, J.M. et al. (2015) J. Neurophysiol. 113, 2078.
    12. Piet, R. et al. (2015) J. Neurosci. 35, 6881.
    13. Riazi, K. et al. (2015) J. Neurosci. 35, 4942.
    14. Wilson, M.J. et al. (2015) J. Neurophysiol. 113, 2289.
    15. Amato, A. et al. (2014) J. Endocrinol. 221, 29.
    16. Babic, T. and Travagli, R.A. (2014) J. Physiol. 592, 1411.
    17. Fung, C. et al. (2014) Am. J. Physiol. 306, G748.
    18. Giglio, A.M. and Storm, J.F. (2014) Eur. J. Neurosci. 39, 12.
    19. Guo, W. et al. (2014) J. Cell Sci. 127, 2249.
    20. Hernandez-Gonzalez, O. et al. (2014) Purinergic Signal. 10, 269.
    21. Jackson, J.G. et al. (2014) J. Neurosci. 34, 1613.
    22. Li, Y. et al. (2014) J. Neurophysiol. 111, 145.
    23. Lopez-Gonzalez, I. et al. (2014) Mol. Hum. Reprod. 20, 619.
    24. Mehta, B. et al. (2014) J. Neurosci. 34, 6233.
    25. Oline, S.N. and Burger, R.M. (2014) J. Neurosci. 34, 1314.
    26. Sanchez-Aguilera, A. et al. (2014) J. Physiol. 592, 2845.
    27. Soh, H. et al. (2014) J. Neurosci. 34, 5311.
    28. Tamura, A. et al. (2014) PLoS ONE 9, e85351.
    29. Tan, Z.Y. et al. (2014) J. Neurosci. 34, 7190.
    30. Altimimi, H.F. and Stellwagen, D. (2013) J. Neurosci. 33, 11763.
    31. Amato, A. et al. (2013) Eur. J. Pharmacol. 718, 131.
    32. Ambrogini, P. et al. (2013) Brain Res. 1534, 1.
    33. Bende, N.S. et al. (2013) Biochem. Pharmacol. 85, 1542.
    34. Benton, M.D. et al. (2013) J. Neurophysiol. 109, 2528.
    35. Bonin, R.P. et al. (2013) PLoS ONE 8, e58679.
    36. Browning, K.N. et al. (2013) J. Physiol. 591, 2357.
    37. Casanova, J.R. et al. (2013) Eur. J. Neurosci. 38, 3115.
    38. Cervantes, B. et al. (2013) Neuroscience 240, 163.
    39. Chen, Z. et al. (2013) J. Neurosci. 33, 8336.
    40. Clements, M.A. et al. (2013) J. Neurosci. 33, 2697.
    41. de Croft, S. et al. (2013) Endocrinology 154, 2750.
    42. Eggers, E.D. et al. (2013) J. Neurophysiol. 110, 709.
    43. Fisher-Lavie, A. and Ziv, N.E. (2013) J. Neurosci. 33, 13094.
    44. Fritz, E. et al. (2013) J. Neurophysiol. 109, 2803.
    45. Gill, R. et al. (2013) Eur. J. Neurosci. 38, 3554.
    46. Guillouet, M. et al. (2013) Cytokine 64, 165.
    47. Honsa, P. et al. (2013) Neuroscience 240, 39.
    48. Kopach, O. et al. (2013) J. Pain 14, 182.
    49. Kozhemyakin, M. et al. (2013) Neurobiol. Dis. 54, 94.
    50. Kuboyama, T. et al. (2013) Exp. Neurol. 248, 157.
    51. Lecker, I. et al. (2013) Br. J. Anaesth. 110, i73.
    52. Piet, R. et al. (2013) J. Neurosci. 33, 10828.
    53. Ran, I. et al. (2013) J. Neurosci. 33, 1872.
    54. Rodriguez-Tornos, F.M. et al. (2013) PLoS ONE 8, e53848.
    55. Sieber, A.R. et al. (2013) J. Neurosci. 33, 15675.
    56. Stagni, F. et al. (2013) PLoS ONE 8, e61689.
    57. Tailor, J. et al. (2013) J. Neurosci. 33, 12407.
    58. Thornton, P.D.J. et al. (2013) PLoS ONE 8, e40840.
    59. Vislay, R.L. et al. (2013) J. Neurosci. 33, 7548.
    60. Wen, H. et al. (2013) eLife 2, e01206.
    61. Zhang, C. et al. (2013) Am. J. Physiol. 304, E1237.
    62. Zhang, L. et al. (2013) Neuropharmacology 72, 106.
    63. Zhang, M.M. et al. (2013) Br. J. Pharmacol. 169, 102.
    64. Manuel, Met al. (2012) J. Neurophysiol. 108, 2991.
    65. Mimee, Aet al. (2012) Am. J. Physiol. 302, R1297.
    66. Soliman, Det al. (2012) J. Pharmacol. Exp. Ther. 343, 325.
    67. Tucker, K.Ret al. (2012) J. Neurosci. 32, 14519.
    Shipping and Ordering information