Free shipping starts now, no minimum, no coupons required!

Anti-KV4.2 Antibody

Voltage-gated potassium channel subfamily D member 2, KCND2, Shal1, RK5

Cat #: APC-023
Alternative Name Voltage-gated potassium channel subfamily D member 2, KCND2, Shal1, RK5
Lyophilized Powder yes
Type: Polyclonal
Host: Rabbit
Reactivity: h, m, r
Immunogen
  • Peptide (C)SNQLQSSEDEPAFVSK, corresponding to amino acid residues 454-469 of rat KV4.2 (Accession Q63881). Intracellular, C-terminus.
Accession (Uniprot) Number Q63881
Gene ID 65180
Peptide confirmation Confirmed by amino acid analysis and mass spectrometry.
Homology Mouse, human - 15/16 amino acid residues identical.
RRID AB_2040176.
Purity Affinity purified on immobilized antigen.
Form Lyophilized powder. Reconstituted antibody contains phosphate buffered saline (PBS), pH 7.4, 1% BSA, 0.05% NaN3.
Isotype Rabbit IgG.
Storage before reconstitution The antibody ships as a lyophilized powder at room temperature. Upon arrival, it should be stored at -20°C.
Reconstitution 25 µl, 50 μl or 0.2 ml double distilled water (DDW), depending on the sample size.
Antibody concentration after reconstitution 0.6 mg/ml.
Storage after reconstitution The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods, small aliquots should be stored at -20°C. Avoid multiple freezing and thawing. Centrifuge all antibody preparations before use (10000 x g 5 min).
Standard quality control of each lot Western blot analysis.
Applications: ic, if, ih, ip, wb
May also work in: ifc*
Western blot
  • Western blot analysis of rat brain membranes:
    Western blot analysis of rat brain membranes:
    1. Anti-KV4.2 Antibody (#APC-023), (1:200).
    2. Anti-KV4.2 Antibody, preincubated with Kv4.2 Blocking Peptide (#BLP-PC023).
  • Human myometrium tissue lysate (Novakovic, R. et al. (2015) Mol. Hum. Reprod. 21, 545.).
Immunoprecipitation
  • Rat brain lysate (Chu, P.J. et al. (2006) J. Biol. Chem. 281, 365.).
Immunohistochemistry
  • Rat brain sections.

    Human myometrium sections (1:50) (Novakovic, R. et al. (2015) Mol. Hum. Reprod. 21, 545.).
Immunocytochemistry
  • Mouse spiral ganglion (Adamson, C.L. et al. (2002) J. Neuroscience 22, 1385.).
References
  1. Roberds, S.L. and Tamkun, M.M. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1798.
  2. Serodio, P. et al. (1994) J. Neurophysiol. 72,1516.
  3. Guo, W. et al. (2002) Circ. Res. 90, 586.
  4. Escoubas, P. et al. (2002) Mol. Pharmacol. 62, 48.
Scientific background

KV4.2 is a voltage-dependent K+ channel that belongs to the Shal channel subfamily and includes two other members: KV4.1 and KV4.3.1

KV4.2 possesses the signature structure of the voltage-dependent K+ channels: six membrane-spanning domains with intracellular N and C termini. As with other members of the voltage-gated K+ channel superfamily, the functional channel is a tetramer that can be composed of more than one member of the Shal subfamily, i.e. heterotetramers of KV4.1 and KV4.3.

The KV4 channels are characterized by activation at subthreshold membrane potentials, inactivate rapidly and recover from inactivation quickly compared with other voltage-dependent K+ channels. This type of current is known as transient A-type K+ currents. For example, depolarization-activated K+ currents in rat neostriatal cholinergic interneurons are predominantly of the A-type and attributable to coexpression of KV4.2 and KV4.1 subunits.2

The biophysical properties of the KV4.2 subunit can be modified by its association with auxiliary β subunits such as the KChIP family that increase KV4.2 current densities and accelerates both the inactivation and the recovery time.

KV4.2 is also highly expressed in the heart where together with KV4.3 underlie the fast inactivating and recovering cardiac transient outward current Ito.3

Several toxins from spider venoms are potent blockers (affecting the channels in the nanomolar range) of KV4.2 channels. Among these the most potent and selective are Stromatoxin-1 (#STS-350), (1.2nM), Phrixotoxin-1 (#STP-700), (5 nM), Phrixotoxin-2 (#STP-710), (34 nM) and Heteropodatoxin-2 (#STH-340), (100 nM).4

Application key:

CBE- Cell-based ELISA, FC- Flow cytometry, ICC- Immunocytochemistry, IE- Indirect ELISA, IF- Immunofluorescence, IFC- Indirect flow cytometry, IHC- Immunohistochemistry, IP- Immunoprecipitation, LCI- Live cell imaging, N- Neutralization, WB- Western blot

Species reactivity key:

H- Human, M- Mouse, R- Rat
Last update: 11/04/2021

Anti-KV4.2 Antibody (#APC-023) is a highly specific antibody directed against an epitope of the rat protein. The antibody can be used in western blot, immunoprecipitation, immunocytochemistry, and immunohistochemistry applications. It has been designed to recognize KV4.2 from human, rat, and mouse samples.

For research purposes only, not for human use

Applications

Specifications

Scientific Background

Citations

Citations
Western blot citations
  1. Rat heart lysate.
    Liu, X. et al. (2016) Cell. Physiol. Biochem. 39, 102.
  2. Mouse heart lysate (1:2000).
    El Gebeily, G. et al. (2015) J. Mol. Cell. Cardiol. 86, 85.
  3. Rat ventricular myocytes (1:200).
    Liu, W.J. et al. (2015) Am. J. Physiol. 309, H1288.
  4. Mouse brain lysate (1:2000).
    Hall, A.M. et al. (2015) J. Neurosci. 35, 6221.
  5. Human myometrium tissue lysate.
    Novakovic, R. et al. (2015) Mol. Hum. Reprod. 21, 545.
  6. Mouse sarcolemmal protein lysate.
    Ednie, A.R. and Bennett, E.S. (2015) J. Biol. Chem. 290, 2769.
  7. Rat uterine tissue lysate.
    Novakovic, R. et al. (2013) J. Physiol. Pharmacol. 64, 795.
Immunoprecipitation citations
  1. Rat brain lysate (2 µg).
    Jensen, C.S. et al. (2014) J. Biol. Chem. 289, 10566.
  2. Rat brain lysate.
    Chu, P.J. et al. (2006) J. Biol. Chem. 281, 365.
Immunohistochemistry citations
  1. Rat lumbar spinal cord sections.
    Wolff, M. et al. (2016) Neurosci. Res. 109, 16.
  2. Human myometrium sections (1:50).
    Novakovic, R. et al. (2015) Mol. Hum. Reprod. 21, 545.
Immunocytochemistry citations
  1. Mouse spiral ganglion.
    Adamson, C.L. et al. (2002) J. Neuroscience 22, 1385.
More product citations
  1. Kunert Keil, C. et al. (2013) J. Renin-Angiotensin-Aldosterone System 14, 41.
  2. Kerti, K. et al. (2012) Eur. J. Neurosci. 35, 66.
  3. Suzuki, T. et al. (2012) PLoS One 7, e35353.
  4. Bignolais, O. et al. (2011) J. Mol. Cell. Cardiol. 51, 713.
  5. Chen, M. et al. (2010) Am. J. Physiol. 299, R177.
  6. Dabrowska, J. et al. (2010) Neuroscience 171, 721.
  7. Liu, W. et al. (2010) J. Mol. Cell. Cardiol. 49, 438.
  8. Moise, L. et al. (2010) Channels 4, 115.
  9. Grandy, S.A. et al. (2009) J. Mol. Cell. Cardiol. 47, 238.
  10. Loewen, M.L. et al. (2009) Am. J. Physiol. 296, H71.
  11. Fernandez-Velasco, M. et al. (2007) Am. J. Physiol. Heart Circ. Physiol. 293, H238.
  12. Sonner, P.M. and Stern, J.E. (2007) J. Physiol. 582, 1219.
  13. Xia, F. et al. (2007) Endocrinology 148, 2157.
  14. Colinas, O. et al. (2006) Am. J. Physiol. Heart Circ. Physiol. 291, H1978.
  15. Hu, H-J. et al. (2006) Neuron 50, 89.
  16. Jia, Y. et al. (2006) Circ. Res. 98, 386.
  17. Petkova-Kirova, P.S. et al. (2006) Am. J. Physiol. Heart Circ. Physiol. 290, H2098.
  18. Suzuki, T. et al. (2005) Am J. Physiol. Endocrinol. Metab. 288, E335.
  19. Xu, Y. et al. (2005) J. Physiol. 562.3, 745.
  20. Li, G.R. et al. (2003) Cardiovasc. Res. 58, 89.
  21. Shimoni, Y. et al. (2003) Am. J. Physiol. Heart Circ. Physiol. 284, H1168.
  22. Shimoni, Y. et al. (2003) J. Physiol. 550.2, 401.
  23. Yamashita, T. et al. (2003) Circulation 107, 1917.
  24. Amberg, G.C. et al. (2002) J. Physiol. 544.2, 403.
  25. Amberg, G.C. et al. (2002) J. Physiol. 544.2, 417.
  26. Sanchez, D. et al. (2002) J. Physiology 542.2, 369.
  27. Trepanier-Boulay, V. et al. (2001) Circ. Res. 89, 437.
  28. Adams, J.P. et al. (2000) J. Neurochem. 75, 2277.
  29. Anderson, A.E. et al. (2000) J. Biol. Chem. 275, 5337.
  30. Yamashita, T. et al. (2000) Circulation 101, 2007.
Shipping and Ordering information