Anti-KV1.2 (KCNA2) Antibody

Potassium voltage-gated channel subfamily A member 2, RBK2
    Cat #: APC-010
  • Lyophilized Powder
  • Antigen Incl.
  • Shipped at Room Temp.
  • Type: Polyclonal
    Source: Rabbit
    Reactivity: h, m, r
    Immunogen
    GST fusion protein with sequence YHRETEGEEQAQYLQVTSCPKIPSSPDLKK SRSASTISKSDYMEIQEGVNNSNEDFREENLKTANCTLANTNYVNITKMLTDV, corresponding to amino acid residues 417-499 of rat KV1.2 (Accession P63142). Intracellular, C-terminus.
    Accession (Uniprot) Number P63142
    Gene ID 25468
    Peptide confirmation Confirmed by DNA sequence and SDS-PAGE.
    Homology Mouse, dog, human, - identical.
    Purity The serum was depleted of anti-GST antibodies by affinity chromatography on immobilized GST and from cross-reactive antibodies by affinity chromatography on immobilized KV1.1-GST-fusion protein and KV1.4-GST-fusion protein. The antibody was then affinity purified on immobilized KV1.2-GST.
    Formulation Lyophilized powder. Reconstituted antibody contains phosphate buffered saline (PBS), pH 7.4, 1% BSA, 5% sucrose, 0.025% NaN3.
    Storage before reconstitution The antibody ships as a lyophilized powder at room temperature. Upon arrival, it should be stored at -20°C.
    Reconstitution 25 µl, 50 µl or 0.2 ml double distilled water (DDW), depending on the sample size.
    Antibody concentration after reconstitution 0.8 mg/ml.
    Storage after reconstitution The reconstituted solution can be stored at 4°C for up to 1 week. For longer periods, small aliquots should be stored at -20°C. Avoid multiple freezing and thawing. Centrifuge all antibody preparations before use (10000 x g 5 min).
    Control antigen storage before reconstitution Lyophilized powder can be stored intact at room temperature for 2 weeks. For longer periods, it should be stored at -20°C.
    Control antigen reconstitution 100 μl PBS.
    Control antigen storage after reconstitution -20°C.
    Preadsorption Control 3 µg fusion protein per 1 µg antibody.
    Standard quality control of each lot Western blot analysis.
    Applications: ic, ih, wb
    May also work in: ifc, ip
    Western blot
    Western blot analysis of rat brain membranes:
    1. Anti-KV1.2 (KCNA2) Antibody (#APC-010), (1:200).
    2. Anti-KV1.2 (KCNA2) Antibody, preincubated with the control peptide antigen.
    Western blot analysis of rat heart membranes:
    1. Anti-KV1.2 (KCNA2) Antibody (#APC-010), (1:200)
    2. Anti-KV1.2 (KCNA2) Antibody, preincubated with the control antigen.
    Immunohistochemistry
    Immuno-colocalization of KV1.2 and KV1.1 in mouse cerebellum
    Immunohistochemical staining of mouse perfusion-fixed frozen brain sections using Anti-KV1.2 (KCNA2) Antibody (#APC-010), (1:300) and Anti-KV1.1 (KCNA1) (extracellular)-ATTO-594 Antibody (#APC-161-AR), (1:100). A. KV1.2 staining, followed by donkey-anti-rabbit-Cy2 (green). B. KV1.1 staining (red). C. Merge of the two images suggests considerable co-localization in the pinceau structures (up-pointing arrows). KV1.1 also appears in blood vessels (down-pointing arrows), where no KV1.2 expression is observed.
    Mouse cerebellum (1:350) (Kleopa, K.A. et al. (2006) Brain 129, 1570.).
    Immunocytochemistry
    HeLa transfected cells (1:200) (Kleopa, K.A. et al. (2006) Brain 129, 1570.).
    References
    1. McKinnon, D. (1989) J.Biol. Chem. 264, 8230.
    2. Gutman, G.A. et al. (2005) Pharmacol. Rev57, 473.
    3. Long, S.B. et al. (2005) Science 309, 897.
    4. Bogin, O. (2006) Modulator 21, 28.
    Scientific background

    KV1.1 is a mammalian voltage-dependent K+ channel, homologous to the Drosophila Shaker K+ channel. KV1.1 was the first mammalian KV channel to be cloned from mouse brain.1 Eight Shaker-related genes exist in mammals constituting the KV1, subfamily of the large KV channel family of genes.2

    A functional KV1 channel is either a membrane spanning homotetramer or heterotetramer, which is composed of members of the same subfamily. In addition several auxiliary subunits and intracellular proteins might interact with the channel and affect its function.

    The structure of KV1.1 channel is similar to all KV channels and includes six membrane spanning helices creating a voltage sensor domain and a pore domain.2

    The channel is expressed in neurons and cardiac and skeletal muscle tissue as well as in retina and pancreas.2 The functional channel is considered low voltage activated and shows very little inactivation. Therefore, this channel activity influences the membrane potential and excitability of neurons and muscle. Mutations in the coding of KV1.1 gene were discovered in Episodic Ataxia patients.3

    KV1.1 channels are sensitive to low doses of TEA (0.3 mM) and 4-AP (0.29 mM), the “classical” non-selective potassium channel blockers.

    Several venomous toxins from snakes, scorpions and sea anemones are potent blockers (affecting the channels in the nanomolar range) of KV1.1 channels. Among these the most potent and selective are α-Dendrotoxin (#D-350, 0.4-4 nM) and δ-Dendrotoxin (#D-380, 0.03-1.8 nM), Dendrotoxin-K (#D-400, 0.03 nM), Agitoxin-2 (#STA-420, 0.044 nM) and Hongotoxin-1 (#RTH-400, 0.031 nM).4

    Application key:

    CBE- Cell-based ELISA, FC- Flow cytometry, ICC- Immunocytochemistry, IE- Indirect ELISA, IFC- Indirect flow cytometry, IHC- Immunohistochemistry, IP- Immunoprecipitation, LCI- Live cell imaging, N- Neutralization, WB- Western blot

    Species reactivity key:

    H- Human, M- Mouse, R- Rat
    Last update: 26/11/2018

    Alomone Labs is pleased to offer a highly specific antibody directed against an epitope of rat KV1.2. Anti-KV1.2 (KCNA2) Antibody (#APC-010) can be used in western blot, immunohistochemistry, and immunocytochemistry applications. It has been designed to recognize KV1.2 from human, rat, and mouse samples.

    For research purposes only, not for human use
    Citations
    Western blot citations
    1. Human lung carcinoma cell line A549 isolated nuclei.
      Jang, S.H. et al. (2015) J. Biol. Chem. 290, 12547.
    2. Rat lung lysate.
      Lv, Y. et al. (2013) Am. J. Physiol. 305, L856.
    3. Mouse spinal cord lysate (1:1000).
      Zoupi, L. et al. (2013) Glia 61, 1236.
    Immunohistochemistry citations
    1. Rat lumbar spinal cord sections.
      Wolff, M. et al. (2016) Neurosci. Res. 109, 16.
    2. Rat DRGs.
      Takahashi, R. et al. (2013) J. Urol. 190, 2296.
    3. Mouse spinal cord and cortex sections (1:200).
      Zoupi, L. et al. (2013) Glia 61, 1236.
    4. Human artery tissues (1:50).
      Gojkovic-Bukarica, L. et al. (2011) Eur. J. Pharmacol.  654, 266.
    5. Mouse cerebellum (1:300).
      Kleopa, K.A. et al. (2006) Brain 129, 1570.
    Immunocytochemistry citations
    1. Rat hippocampus cell culture.
      Sobieski, C. et al. (2015) J. Neurosci. 35, 11105.
    2. HeLa transfected cells (1:200).
      Kleopa, K.A. et al. (2006) Brain 129, 1570.
    More product citations
    1. Hao, J. et al. (2013) Neuron 77, 899.
    2. Horn, K.E. et al. (2013) Cell Rep. 3, 173.
    3. Bin, J.M. et al. (2012) PLoS ONE 7, e41237.
    4. Cazzin, C. et al. (2011) Genes Brain Behav. 10, 817.
    5. Gojkovic-Bukarica, L. et al. (2011) Eur. J. Pharmacol. 654, 266.
    6. Irani, S.R. et al. (2010) Brain 133, 2734.
    7. Savvaki, M. et al. (2010) J. Neurosci. 30, 13943.
    8. Sun, W. et al. (2010) J. Neurophysiol103, 469.
    9. Utsunomiya, I. et al. (2010) J. Neurochem. 112, 913.
    10. Hayashi, Y. et al. (2009) Am J. Physiol. 296, R1661.
    11. Hsiao, C.F. et al. (2009) J. Neurophysiol101, 1407.
    12. Cox, R.H. et al. (2008) Am. J. Hypertens. 21, 213.
    13. Gautier, M. et al. (2007) Am. J. Physiol. 292, 475.
    14. Neshatian, L. et al. (2007) Am. J. Physiol. 292, G1233.
    15. Rivera, J. et al. (2007) Eur. J. Neurosci. 25, 136.
    16. Susuki, K. et al. (2007) Glia 55, 746.
    17. Kuba, H. et al. (2006) Nature 444, 1069.
    18. Fordyce, C.B. et al. (2005) J. Neurosci. 25, 7139.
    19. Kuba, H. et al. (2005) J. Neurosci. 25, 1924.
    20. Wang, J. et al. (2005) Am. J. Physiol. 288, L1049.
    21. Karimi-Abdolrezaee, S. et al. (2004) Eur. J. Neurosci. 19, 577.
    22. Nakayama, H. et al. (2004) J. Neurosci. 24, 3199.
    23. Dodson, P.D. et al. (2003) J. Physiol. 550, 27.
    24. Popratiloff, A. et al. (2003) J. Comp. Neurol. 461, 466.
    25. Rios, J.C. et al. (2003) J. Neurosci. 23, 7001.
    26. Adamson, C.L. et al (2002) J. Neurosci. 22, 1385.
    27. Arroyo, E.J. et al. (2002) J. Neurosci. 22, 1726.
    28. Chittajallu, R. et. al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 2350.
    29. Felix, R. et al. (2002) Zygote 10, 183.
    30. Chung, Y.H. et al. (2000) Brain Res. 875, 164.
    31. Conforti, L. et al. (2000) J. Physiol. 524, 783.
    32. Nashmi, R. et al. (2000) Eur. J. Neurosci. 12, 491.
    33. Arroyo, E.J. et al. (1999) J. Neurocytol. 28, 333.
    34. Sobko, A. et al. (1998) J. Neurosci. 18, 10398.
    35. Yuan, X.J. et al. (1998) Am. J. Physiol274, L621.
    36. Attali, B. et al. (1997) J. Neurosci. 17, 8234.
    37. Wang, J. et al. (1997) J. Clin. Invest100, 2347.
    Related Products
      • Antibodies for immuno-colocalization experiments
        1. Tityustoxin-Kα-ATTO-594 (#STT-360-AR).
          A fluorescent labeled specific KV1.2 blocker. It can be used in immuno-colocalization studies to label KV1.2 channels.
      • Antibodies for live cell imaging experiments
        1. Anti-KV1.2 (KCNA2) (extracellular) Antibody (#APC-162).
          This antibody recognizes an extracellular epitope and can be used to detect KV1.2 in live cells.
        2. Tityustoxin-Kα-ATTO-594 (#STT-360-AR).
          A fluorescent labeled specific KV1.2 blocker. It can be used in living cells to detect KV1.2 channels.